Camera is a responsive/adaptive slideshow. Try to resize the browser window
It uses a light version of jQuery mobile, navigate the slides by swiping with your fingers
It's completely free (even though a donation is appreciated)
Camera slideshow provides many options to customize your project as more as possible
Thats the pride you have

Monday, 14 November 2016

ND 2 FIRST SEMESTER MATERIALS PDF


HERE IS FOLDER THAT CONTAINS ALL THE MATERIALS YOU NEED, SO
 DOWNLOAD them below.

1. COM 211 Practical DOWNLOAD
2. COM 211 Theory DOWNLOAD
3. COM 212 Theory DOWNLOAD
4. COM 212 Practical DOWNLOAD
5. COM 213 Practical DOWNLOAD
6. COM 213 Theory DOWNLOAD
7. COM 214 Theory DOWNLOAD
8. COM 215 Practical DOWNLOAD
9. COM 215 Theory DOWNLOAD
10. COM 216 Practical DOWNLOAD
11. COM 216 Theory DOWNLOAD
12. COM 217 THEORY DOWNLOAD

Wednesday, 2 November 2016

NUMBER CONVERSION

There are many methods or techniques which can be used to convert numbers from one base to another. We'll demonstrate here the following:
  • Decimal to Other Base System
  • Other Base System to Decimal
  • Other Base System to Non-Decimal
  • Shortcut method - Binary to Octal
  • Shortcut method - Octal to Binary
  • Shortcut method - Binary to Hexadecimal
  • Shortcut method - Hexadecimal to Binary

Decimal to Other Base System

steps
  • Step 1 - Divide the decimal number to be converted by the value of the new base.
  • Step 2 - Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base number.
  • Step 3 - Divide the quotient of the previous divide by the new base.
  • Step 4 - Record the remainder from Step 3 as the next digit (to the left) of the new base number.
Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.
The last remainder thus obtained will be the most significant digit (MSD) of the new base number.

Example

Decimal Number : 2910
Calculating Binary Equivalent:
StepOperationResultRemainder
Step 129 / 2141
Step 214 / 270
Step 37 / 231
Step 43 / 211
Step 51 / 201
As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the first remainder becomes the least significant digit (LSD) and the last remainder becomes the most significant digit (MSD).
Decimal Number : 2910 = Binary Number : 111012.

Other base system to Decimal System

Steps
  • Step 1 - Determine the column (positional) value of each digit (this depends on the position of the digit and the base of the number system).
  • Step 2 - Multiply the obtained column values (in Step 1) by the digits in the corresponding columns.
  • Step 3 - Sum the products calculated in Step 2. The total is the equivalent value in decimal.

Example

Binary Number : 111012
Calculating Decimal Equivalent:
StepBinary NumberDecimal Number
Step 1111012((1 x 24) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
Step 2111012(16 + 8 + 4 + 0 + 1)10
Step 31110122910
Binary Number : 111012 = Decimal Number : 2910

Other Base System to Non-Decimal System

Steps
  • Step 1 - Convert the original number to a decimal number (base 10).
  • Step 2 - Convert the decimal number so obtained to the new base number.

Example

Octal Number : 258
Calculating Binary Equivalent:

Step 1 : Convert to Decimal

StepOctal NumberDecimal Number
Step 1258((2 x 81) + (5 x 80))10
Step 2258(16 + 5 )10
Step 32582110
Octal Number : 258 = Decimal Number : 2110

Step 2 : Convert Decimal to Binary

StepOperationResultRemainder
Step 121 / 2101
Step 210 / 250
Step 35 / 221
Step 42 / 210
Step 51 / 201
Decimal Number : 2110 = Binary Number : 101012
Octal Number : 258 = Binary Number : 101012

Shortcut method - Binary to Octal

Steps
  • Step 1 - Divide the binary digits into groups of three (starting from the right).
  • Step 2 - Convert each group of three binary digits to one octal digit.

Example

Binary Number : 101012
Calculating Octal Equivalent:
StepBinary NumberOctal Number
Step 1101012010 101
Step 210101228 58
Step 3101012258
Binary Number : 101012 = Octal Number : 258

Shortcut method - Octal to Binary

Steps
  • Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).
  • Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example

Octal Number : 258
Calculating Binary Equivalent:
StepOctal NumberBinary Number
Step 1258210 510
Step 22580102 1012
Step 32580101012
Octal Number : 258 = Binary Number : 101012

Shortcut method - Binary to Hexadecimal

Steps
  • Step 1 - Divide the binary digits into groups of four (starting from the right).
  • Step 2 - Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number : 101012
Calculating hexadecimal Equivalent:
StepBinary NumberHexadecimal Number
Step 11010120001 0101
Step 2101012110 510
Step 31010121516
Binary Number : 101012 = Hexadecimal Number : 1516

Shortcut method - Hexadecimal to Binary

steps
  • Step 1 - Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be treated as decimal for this conversion).
  • Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example

Hexadecimal Number : 1516
Calculating Binary Equivalent:
StepHexadecimal NumberBinary Number
Step 11516110 510
Step 2151600012 01012
Step 31516000101012
Hexadecimal Number : 1516 = Binary Number : 101012

THE NUMBER SYSTEM

When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.
A value of each digit in a number can be determined using
  • The digit
  • The position of the digit in the number
  • The base of the number system (where base is defined as the total number of digits available in the number system).

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands and so on.
Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can be written as
(1x1000)+ (2x100)+ (3x10)+ (4xl)
(1x103)+ (2x102)+ (3x101)+ (4xl00)
1000 + 200 + 30 + 4
1234
As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.
S.N.Number System and Description
1
Binary Number System
Base 2. Digits used : 0, 1
2
Octal Number System
Base 8. Digits used : 0 to 7
3
Hexa Decimal Number System
Base 16. Digits used : 0 to 9, Letters used : A- F

Binary Number System

Characteristics of binary number system are as follows:

  • Uses two digits, 0 and 1.
  • Also called base 2 number system
  • Each position in a binary number represents a 0 power of the base (2). Example 20
  • Last position in a binary number represents a x power of the base (2). Example 2x where x represents the last position - 1.

Example

Binary Number : 101012
Calculating Decimal Equivalent:
StepBinary NumberDecimal Number
Step 1101012((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
Step 2101012(16 + 0 + 4 + 0 + 1)10
Step 31010122110
Note : 101012 is normally written as 10101.

Octal Number System

Characteristics of octal number system are as follows:

  • Uses eight digits, 0,1,2,3,4,5,6,7.
  • Also called base 8 number system
  • Each position in an octal number represents a 0 power of the base (8). Example 80
  • Last position in an octal number represents a x power of the base (8). Example 8x where x represents the last position - 1.

Example

Octal Number : 125708
Calculating Decimal Equivalent:
StepOctal NumberDecimal Number
Step 1125708((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10
Step 2125708(4096 + 1024 + 320 + 56 + 0)10
Step 3125708549610
Note : 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics of hexadecimal number system are as follows:

  • Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
  • Letters represents numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15.
  • Also called base 16 number system
  • Each position in a hexadecimal number represents a 0 power of the base (16). Example 160
  • Last position in a hexadecimal number represents a x power of the base (16). Example 16x where x represents the last position - 1.

Example

Hexadecimal Number : 19FDE16
Calculating Decimal Equivalent:
StepBinary NumberDecimal Number
Step 119FDE16((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10
Step 219FDE16((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10
Step 319FDE16(65536+ 36864 + 3840 + 208 + 14)10
Step 419FDE1610646210
Note : 19FDE16 is normally written as 19FDE.

COMPUTER SOFTWARES

Software is a set of programs, which is designed to perform a well-defined function. A program is a sequence of instructions written to solve a particular problem.
There are two types of software
  • System Software
  • Application Software

System Software

The system software is collection of programs designed to operate, control, and extend the processing capabilities of the computer itself. System software are generally prepared by computer manufactures. These software products comprise of programs written in low-level languages which interact with the hardware at a very basic level. System software serves as the interface between hardware and the end users.
Some examples of system software are Operating System, Compilers, Interpreter, Assemblers etc.
Application Software
Features of system software are as follows:
  • Close to system
  • Fast in speed
  • Difficult to design
  • Difficult to understand
  • Less interactive
  • Smaller in size
  • Difficult to manipulate
  • Generally written in low-level language

Application Software

Application software products are designed to satisfy a particular need of a particular environment. All software applications prepared in the computer lab can come under the category of Application software.
Application software may consist of a single program, such as a Microsoft's notepad for writing and editing simple text. It may also consist of a collection of programs, often called a software package, which work together to accomplish a task, such as a spreadsheet package.
Examples of Application software are following:
  • Payroll Software
  • Student Record Software
  • Inventory Management Software
  • Income Tax Software
  • Railways Reservation Software
  • Microsoft Office Suite Software
  • Microsoft Word
  • Microsoft Excel
  • Microsoft Powerpoint
Application Software
Features of application software are as follows:
  • Close to user
  • Easy to design
  • More interactive
  • Slow in speed
  • Generally written in high-level language
  • Easy to understand
  • Easy to manipulate and use
  • Bigger in size and requires large storage space